
Proactive and Adaptive Energy-Aware

Programming with Mixed Typechecking

Anthony Canino Yu David Liu

SUNY Binghamton, USA

{acanino1,davidL}@binghamton.edu

Abstract

Application-level energy management is an important di-
mension of energy optimization. In this paper, we introduce
ENT, a novel programming language for enabling proactive
and adaptive mode-based energy management at the ap-
plication level. The proactive design allows programmers
to apply their application knowledge to energy manage-
ment, by characterizing the energy behavior of different
program fragments with modes. The adaptive design allows
such characterization to be delayed until run time, useful
for capturing dynamic program behavior dependent on pro-
gram states, configuration settings, external battery levels,
or CPU temperatures. The key insight is both proactiveness
and adaptiveness can be unified under a type system com-
bined with static typing and dynamic typing. ENT has been
implemented as an extension to Java, and successfully ported
to three energy-conscious platforms: an Intel-based laptop, a
Raspberry Pi, and an Android phone. Evaluation shows ENT

improves the programmability, debuggability, and energy ef-
ficiency of battery-aware and temperature-aware programs.

CCS Concepts • Software and its engineering → Extra-
functional properties; Language features

Keywords Energy Efficiency, Energy-Aware Programming,
Type systems

1. Introduction

A critical dimension of energy optimization of computer
systems is application-level energy management [19, 32, 46,
51, 54, 59, 64, 69], i.e., approaches that apply application-
specific knowledge to improve energy efficiency. One promis-
ing direction with growing interest is mode-based energy-
aware programming [32, 59, 64, 69]. Drawing analogy from
hardware-level CPU modes, these application-level solu-
tions define alternative application behavior for different

energy states. For example, a smartphone programmer may
write an App that produces high-resolution images under the
“high battery” mode and low-resolution ones under the “low
battery” mode.

From the standpoint of programming, proactiveness and
adaptiveness are two central yet often competing goals
of mode-based energy-aware programming. A proactive
energy-aware programmer may statically assign all pro-
gram components to different modes, and regulate how
these components may — and may not — interact with
each other [32, 59]. On the extreme end of adaptiveness,
an energy-aware program may just be any program whose
behavior adapts to energy changes, wherever in the program,
and whatever program component to adapt to.

This Paper We introduce ENT1, a novel programming lan-
guage to facilitate cooperative mode-based energy manage-
ment between the programmer and the application runtime.
The centerpiece of ENT is a type system that mixes static
and dynamic typing. A program component with its energy
behavior known to programmers is statically assigned with
a type qualifier indicating the mode in which it is expected
to be used, whereas one whose energy behavior is depen-
dent on application or system runtime state is assigned with
a dynamic type, indicating its mode will be determined at
run time. Static or dynamic, the mode information is used
by the type system to regulate interactions between program
components, and possibly expose and eliminate a category
of “energy bugs,” — e.g., a program fragment specifically
defined for ‘high battery” is accidentally used in the mode of
“low battery” — through compile-time or run-time errors.

From an end user’s perspective, ENT is a tool to promote
both proactive and adaptive energy management, guided by
a key insight that the goal of unifying and striking a bal-
ance between the two can be achieved through mixed static
and dynamic type checking [17, 29, 34, 35, 48, 50, 61–
63, 65–67]. With a type-based approach, enforcing the law
of mode-based energy management becomes part of the ex-
perience of energy-aware programming. The choice between
proactiveness and adaptiveness is presented to the program-
mer through static mode type and dynamic mode type dec-

1 Ent is a mixed race of the tree and the human in J. R. R. Tolkien’s Lord of
the Rings.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’17, June 18–23, 2017, Barcelona, Spain

ACM. 978-1-4503-4988-8/17/06...$15.00

http://dx.doi.org/10.1145/3062341.3062356

217

features adaptive support proactive support

attributor determines modes at run time defines “how” by programmer

snapshot expression determines modes at run time defines “when” by programmer

mode cases supports mode-alternative behaviors N/A

static mode type declaration N/A characterizes by programmer

dynamic mode type declaration delays decision to run time identifies adaptive hotspot by programmer

compile-time type error N/A assists in debugging

run-time type error enables exception handling assists in debugging

Figure 1: A Summary of ENT Programming Abstractions and Type System Features

larations. The questions of how and when to take into ac-
count the dynamic behavior of the application and underly-
ing system runtime are answered through programming ab-
stractions that connect dynamic typing and static typing. A
summary of ENT features appears in Figure 1.

ENT is a rigorously defined programming language with
a sound type system, but more importantly, ENT is an open-
source project2. We have used ENT to “upgrade” a number
of real-world applications, making them battery-aware and
temperature-aware on three energy-conscious platforms —
a mobile computer with conventional hardware configura-
tions, an emerging platform with increasing adoption, Rasp-
berry Pi [11], and an Android phone. In practice, we find
the energy behavior of an application fragment frequently
depends on runtime heap states, and more so, external fac-
tors e.g., the configuration files associated with the appli-
cation, or the files/database the application interacts with.
ENT is uniquely suited for improving programmability un-
der these scenarios. We also find the type errors reported
by ENT — either in the form of a compile-time error or a
run-time exception — valuable for understanding the pro-
gram structure and its implications on energy behavior, good
news for debuggability. Last but not least, our case studies
show principled mode-based energy management can lead
to application-level energy savings.

This paper makes the following contributions:

• an insight of supporting application-level mode-based
energy management through a form of mixed typecheck-
ing to balance the proactiveness and adaptiveness of en-
ergy management.

• a language design and compiler implementation to pro-
mote programmability, debuggability, energy efficiency,
and ease of use in the development of battery-aware and
temperature-aware software.

• an evaluation on three energy-conscious mobile plat-
forms: a widely used mobile computer with Intel chips, a
Raspberry Pi, and an Android Phone.

2. Motivation: A Tale of Three Programmers

In this section, we motivate the design of ENT through use
scenarios.

2 We provide the compiler, benchmarks, and a technical report contain-
ing the full formal system, companion proofs, and experimental data at
https://github.com/pl-ent-lang/ent.

A Running Example Imagine Alice, Bob, and Christina
are three “green conscious” application programmers who
would like to write an energy-aware web crawler. Thanks to
real-world applications such as jspider (see Section 5 for
details), its basic program logic is well-known. Alice, Bob,
and Christina all agree their Java implementation resembles
Listing 1, when all code highlighted in red — including code
in a pair of { and } — is elided. Here, the crawling Agent
runs in a “discover-check-crawl” loop. It starts with reading
the Site located by a seed URL, discovering the URL re-
sources used by that site, checking whether the URLs should
be crawled through pre-defined configuration Rule’s, and
iteratively crawling the URLs passing the check.

Alice: A Java Programmer Alice approaches energy-
aware programming with two questions: how to be aware of
physical energy/battery states, and how to make the program
adaptive to the changes in energy states. The first question
is orthogonal to programming language design. She quickly
found some libraries – such as an application-level wrapper
of ACPI [1] — and encapsulated them into a class similar to
Ext class at Line 60. The second question is more relevant
to energy-aware software design. Her design intentions are:

• (A1) if the remaining battery level is 75% or above, or the
Agent will only crawl “local” Site’s, then the crawler
will search up to three depth levels of nested resources
for new Sites to be crawled.

• (A2) if battery is 50% - 75% the Agent will crawl
Site’s with no more than 200 resources. Each Site

is searched up to two depth levels of nested resources.

• (A3) if battery is below 50% the Agent will crawl
Site’s with no more than 50 resources. Only immediate
resources are searched.

As a first step, Alice can encode the intentions using “if-
then-else” case analysis. In this example, it means every oc-
currence of the use of the Site object and the use of the
depth value need to be guarded by a conditional expres-
sion checking the battery state. There are several limitations
when this approach scales. First, since each object or primi-
tive value may be used multiple times, the per-use case anal-
ysis may grow unwieldy as the number of energy-alternative
behaviors scales up. Second, since each case analysis is
hard-coded with checking external battery state, there is no
statically sound approach to reason about the interactions be-
tween program components meant to be used consistently

218

1 modes { energy_saver <= managed; managed <= full_throttle; }

2
3 class Main {
4 public static void main(String[] args) {
5 // arg[0] is configuration file name with filtering rules
6 // arg[1] is seed URL
7
8 Agent da = new Agent(arg[0]);
9 ArraySet urls = new ArraySet (arg[1]);

10 while (true) {
11 ArraySet newbie = new ArraySet();
12 Agent a = snapshot da;
13 foreach(String s : urls) { newbie = a.work(s); }
14 sites.remove(s).add(newbie);
15 }}
16
17 class Agent@mode<?->X> {
18 Rule[] rules;
19 Agent(String file) { rules = parseConfigurationFile(file); }
20 attributor {
21 if (Ext.battery >= 0.75) return full_throttle;
22 else foreach (r: rules)
23 { if (LocalOnlyRule instanceof r) return full_throttle; }
24 else if (Ext.battery >= 0.50) return managed;
25 else return energy_saver;
26 }
27 Set work(String url) {
28 Site@mode<?> ds = Database.lookupSite(url);
29 Site s = snapshot ds [_,X];
30 return s.crawl(depth); // crawl
31 }
32 Rule[] parseConfigurationFile(String file) { ... }
33 mcase<int> depth = mcase<int> {
34 energy_saver: 1;
35 managed: 2;
36 full_throttle: 3;
37 };
38 }
39
40 class Site@mode<?> {
41 Resources[] resources;
42 attributor {
43 if (resources.length > 200) return full_throttle;
44 else if (resources.length > 50) return managed;
45 else return energy_saver;
46 }
47 Site(String url) { this.resources = discoverLinks(url); }
48 Resources[] discoverLinks(String url) { ... }
49 Set crawl(int depth) {
50 ArraySet moreWork = new ArraySet();
51 foreach (r: resources) { moreWork.add(r.process(depth)); }
52 return moreWork;
53 }
54 }
55
56 class Database {...} // Global store of found sites
57 class Resource {...} // URL link and data
58 class Rule {...} // filtering rule
59 class LocalOnlyRule extends Rule {...} // local crawl only
60 class Ext {...} // an ENT library class for external contexts

Listing 1: A Simplified Energy-Aware Web Crawler in
ENT

together in the presence of dynamic battery variations. Over-
all, this is the “wild west” of energy-aware programming,
where the principle behind Alice’s energy management is
buried in the code.

Bob: An Energy Types Programmer To address the chal-
lenges faced by Alice, Bob resorts to energy-aware pro-
gramming with a purely static type system, e.g., Energy
Types [32].

Bob concretizes the energy states Alice had in mind
by defining 3 modes for his program: full throttle,
managed, and energy saver, intuitively capturing (A1),
(A2), (A3) respectively. Furthermore, he may define a par-
tial order over them, such as in Line 1 in Listing 1. For ex-
ample, energy saver <= managed says the program
runtime executing under the energy saver mode is ex-
pected by the programmer to consume less energy than one
under managed. Informally, we say energy saver is

a lesser mode than managed, and managed is a greater
mode than energy saver.

In Energy Types, modes can be used as type qualifiers.
When Bob labels an object with a mode, it means that the
object is expected to be used under said mode. In program-
ming, this generally translates to a workload characteriza-
tion view that the object’s methods and data represent an
expected workload, consuming a level of energy. For exam-
ple, if Bob knows a particular Site object contains more
than 200 resources at compile time, he may label the type
of that object as Site@mode<full throttle>, intu-
itively saying that crawling over this Site is likely to con-
sume a large amount of energy. The only exception to this
view is that a mode-aware execution must be booted from
some object, such as the Agent object in the example. In
this case, Bob may associate a mode with an Agent based
how he wishes to bootstrap the mode-aware execution. For
convenience we refer to the two views as workload mode
and boot mode, respectively. Note, however, the two views
are still unified under the original definition.

The key invariant enforced by Energy Types is the wa-
terfall invariant: an object of mode energy saver can-
not invoke a method of an object of full throttle, but
the opposite is allowed. For example, an Agent object with
boot mode energy saver indicates the bootstrapping of
energy-aware execution with little available energy; hence,
it should only interact with Site objects that consumes lit-
tle energy. As object messaging forms a chain, this invariant
transitively enforces that all objects reachable from a boot
mode are either of the same mode or lesser.

The assistance Bob receives from the static type sys-
tem is twofold: (B1) any program Bob is able to compile
cannot accidentally “equivocate” over the mode of a pro-
gram fragment, such as declaring an object that belongs to
an full throttle mode, and then after the object is
passed around method boundaries or aliased, the same ob-
ject is used as if it belonged to the energy saver mode;
(B2) more importantly, any compiled program of Bob con-
forms to the waterfall invariant, helping Bob establish sound
mode-based energy management throughout his code.

Energy Types represents an extreme case of proactive
energy-aware programming: on one hand, Bob’s knowledge
of his program’s energy consumption is taken into account
for energy management through the mode type declarations;
on the other hand, Bob needs to know the mode of each and
every object at compile time, by type declaration or by type
inference.

On a side note, readers may have noticed that the de-
fault granularity of characterizing energy behavior in Energy
Types is the object. At first glance this may appear counter-
intuitive because energy consumption results from code ex-
ecution, and hence, a method may appear more ideal. How-
ever, consider the crawl method on Line 49 - 53. Its energy
behavior depends on the number of resources defined as
an object field. In other words, energy consumption should
be characterized based on the closure of the method and the

219

data it uses. In an object-oriented language, an object is the
most natural abstraction for a closure. Energy Types further
provides mode overriding for finer-grained energy charac-
terization at the level of methods, a feature useful in practice
for excluding cheaper methods such as accessors.

Christina: An ENT Programmer Christina realizes the
mode that best characterizes the energy behavior of an ob-
ject in many scenarios might be dependent on the dynamic
behavior of the application and the underlying system. In
particular, there are three scenarios where it is particularly
challenging to categorize an object’s behaviour with static
mode types.

• state-dependent: Alice or Bob’s wish to assign a Site
object with an energy saver mode depends on the
object containing no more than 50 resources — some-
thing that is not known until the first discoverLinks
method is called during Site creation (Line 47).

• configuration-dependent: Real-world applications rou-
tinely rely on reading external configuration files to in-
stantiate objects. For example, Line 4–15 may be how
Bob starts his application. Here, arg[0] is the name of
a file defining filtering rules. To achieve (A1), Bob needs
to parse the file before determining the mode for Agent.

• context-dependent: Energy goals (A1) - (A3) require
that an Agent begin the call-chain with the proper mode
determined by the available battery level of the system.

Christina recognizes the benefits that Energy Types brings
to Bob — such as (B1) and (B2) — but high on her list are a
number of features to account for dynamic behaviors:

• (C1) the modes of some objects can be decided at run
time.

• (C2) the objects whose modes are decided at compile
time and those whose modes are decided at run time
should “mesh well”: analogous properties such as (B1)
and (B2) should still hold in the mixed setting, which we
henceforth rename as (C2-1) and (C2-2) respectively.

• (C3) there is a need to support mode-alternative behav-
iors to further improve the adaptiveness of energy-aware
software, e.g., alternative behaviors in the presence of
mode changes.

(C1) and (C3) can be viewed as complementary in the
adaptiveness design space. If we take the classic view where
the object provides a service and whoever holds a refer-
ence to that object is a client to that service, (C1) says
ENT should provide service-side adaptiveness whereas (C3)
calls for client-side adaptiveness. ENT addresses Christina’s
need (C1) through a pair of programming abstractions: the
attributor construct and the snapshot expression, and (C3)
through a programming abstraction called mode cases. (C2)
is addressed through a type system design with mixed type-
checking. We discuss these abstractions in Section 3.

3. Energy-Aware Programming in ENT

3.1 ENT Programming Abstractions

Attributors and Snapshotting In ENT, if a class is declared
to be dynamic — i.e., its class declaration is associated
with @mode<?> or its variant @mode<?->X> — it must
be associated with an attributor. This code block defines
what mode the enclosing object should be assigned with
at run time. For example, Line 20 - 26 says the Agent

object is assigned with the full throttle, managed,
energy saver modes given intentions (A1), (A2), and
(A3), respectively. The code within the attributor can be
arbitrary Java code — allowing the object to inspect its own
fields, the fields of other objects it holds references to, or
lower-level system settings — to make a run-time decision
for the mode of the object, which is the return value of an
attributor.

In addition, ENT supports the snapshot expression. Upon
the evaluation of snapshot e, the attributor of object e is
evaluated, whose returning mode from here on becomes the
mode type for (a copy of) e. For example, Line 12 says the
type of the Agent object is determined for every iteration
of the while loop. Snapshotting can also be bounded. For
example, Line 29 says the resulting snapshot must not have
a mode greater than X. Otherwise, a run-time exception is
thrown.

Philosophically, the attributor design reflects a cooper-
ative decision-making process between the object and its
client: the object decides on how its mode should be as-
signed, based on its view of the runtime state, whereas the
client decides on the timing of mode type determination
through the snapshot expression.

Snapshotting is beyond a simple evaluation of the attrib-
utor — otherwise, one might as well encode the attributor as
a standard method. The key insight here is that the snapshot
expression is the bridge between static typing and dynamic
typing. In this aspect, the snapshot expression can be com-
pared to the type coercion operator prevalent in mixed type
systems. At Line 12, it is important to observe that da and
a are assigned with different types in ENT. Variable da has
type Agent@mode<?>, saying the object has the dynamic
mode type, whereas variable a has type Agent@mode<T>
where T may be one of the 3 modes defined in the program.
In other words, variable a does have a static mode type. We
will elaborate some subtle issues in this design space in Sec-
tion 4.

Mode Cases To address (C3), we adopt mode cases, a form
of tagged union where each tag is a mode name. For exam-
ple, mode case depth between Line 33 and Line 37 says the
depth for crawling is 1 if it is used in an object with mode
energy saver, 2 if in an object with mode managed,
and so on. This construct was used in untyped energy-aware
programming before [69]. ENT’s adoption focuses on how it
is integrated with a type system: the elimination of a mode
case is based on the enclosing object’s mode type. For exam-
ple, if an Agent object is snapshotted to be in the managed

220

1 modes { energy_saver <= managed; managed <= full_throttle; }

2 class Agent@mode<?->X> {
3 attributor {
4 if (Ext.battery >= 0.75) return full_throttle;
5 else if (Ext.battery >= 0.50) return managed;
6 else return energy_saver;
7 }
8 Set work(String url) {
9 Site@mode<X> s = new Site@mode<X>(url);

10 return s.crawl(new @mode<X>DepthRule(),
11 new @mode<X>MaxResourcesRule()); // crawl
12 }}
13 Rule@mode<X>[] parseConfigurationFile(String file) { ... }
14 }
15
16 class Site@mode<X> {
17 Resource[] resources;
18 Set crawl(Rule@mode<X> r1, Rule@mode<X> r2) { ... }
19 }
20
21 class DepthRule@mode<X> extends Rule {
22 mcase<int> depth = mcase<int> {
23 energy_saver: 1;
24 managed: 2;
25 full_throttle: 3;
26 };
27 }
28
29 class MaxResourcesRule@mode<X> extends Rule {
30 mcase<int> maxresources = mcase<int> {
31 energy_saver: 50;
32 managed: 100;
33 full_throttle: 200;
34 };
35 }

Listing 2: A Modified Energy-Aware Web Crawler in
ENT

mode, depth is eliminated to 2. On the high level, this de-
sign allows the program to exhibit mode-alternative behav-
iors based on the mode of the enclosing object.

Generic Modes and Internal-External Mode Distinction
ENT fully supports generic modes, in that the energy mode
of an object/method may be characterized to be paramet-
ric to its instantiation/invocation. This feature is intuitively
analogous to Java generics, except that the generic type pa-
rameters in ENT range over modes.

More relevant to the design of mixed type checking is
how ENT allows the type determined at run time to be
generic, which in turn can be used by the static system. For
example, the declaration of @mode<?->X> at Line 17 says
that any Agent object is instantiated as dynamic, but within
the scope of the object itself, one may view that type as a
static generic type, X. Within the scope of the class, X may
be used just as any type parameter. For example, Line 30
says the upper bound for snapshotting is X, even though we
do not know the concrete mode for X when the program
is written. This illustrates one benefit of generic mode pro-
gramming: it helps the programmer correlate mode declara-
tions at different program points without the need to know
the concrete modes for each, yielding highly “generic” or
“templated” code in nature.

Another implication of this novel design is that more pro-
gram fragments can be statically typed, henceforth poten-
tially catching “energy bugs” at compile time. For example,
observe that at Line 30, we can statically guarantee that this
messaging always conforms to the waterfall invariant, i.e.,
the energy mode of the Agent object itself is always in the
same mode as or a greater mode than that of s.

Type-theoretically, our system achieves type distinction
between the view of the object from itself (“internal”) and
the view of the object from its client (“external”), which we
will revisit in Section 4.

Mode Co-Adaptation The combination of generic modes
and internal-external mode distinction is powerful in sup-
porting some expressive programming idioms. Concretely,
multiple objects may need to “co-adapt” their modes, i.e.,
when one is snapshotted to a particular mode, the parties it
interacts with should also be adapted to objects of the same
mode. This pattern is known to be useful in energy-aware
programming, where program data flow changes in the pres-
ence of a change of energy states [64]. Co-adaptation in ENT

can be supported by declaring one representative object as
dynamic, and its interacting parties as mode cases which are
eliminated based on the internal mode parameter of the dy-
namic object.

Listing 2 shows this co-adaptation pattern in practice. As
opposed to our original jspider example, the code may
be structured so a Site manages crawling using a pair of
Rules (Line 11, 18), each with their own mode-alternative
settings (Line 22 - 26, Line 30 - 34). We use the Agent

as the representative object to determine what mode Site,
DepthRule, and MaxResourcesRule should operate
under, effectively co-adapting all three to have the same
mode when an Agent is snapshotted.

Method-Level Mode Characterization Our discussion so
far has used the object as the granularity for energy mode
characterization. ENT in addition supports method-grained
mode characterization through method overriding.

Syntactically, method-level mode characterization is sim-
ilar to its class-level counterpart. The @mode declaration
that we previously introduced at the class level may also ap-
pear at the method level. To typecheck a method invocation
that involves a method with an overridden mode type, we use
the mode type associated with the method to enforce the wa-
terfall invariant. For example, in Listing 3, the mode type an-
notation for mediaCrawl at Line 29 states that regardless
of the mode of a Site, searching and downloading all mul-
timedia is always an expensive operation and requires the
full throttle operating mode. As a result, a compile-
time error is issued at Line 4.

Generic modes at the method level are also supported.
In the same example above, both the mode characterization
of the method generateRules and that of its returning
Rule[] object are defined as that of its argument Site ob-
ject. This is useful in capturing a programming idiom where
the mode characterization of a method is dependent on its
arguments. Note that Line 6 typechecks, because generic
modes are handled in ENT in a similar fashion as Java gener-
ics.

We also support attributors at the method level, allow-
ing method-level characterization to happen at runtime.
Consider the saveImages method on Lines 20- 21. The
amount of work saveImages must perform depends upon
the input into the method, analogous to object’s whose work-

221

1 class Agent@mode<managed> {
2 Set work(String url) {
3 Site s = Database.lookupSite(url);
4 if (Env.mediaSearch) { return s.mediaCrawl(); }
5 else {
6 Rule[] rules = generateRules(s);
7 return s.crawl(rules);
8 }
9 }}

10
11 @mode<Y> Rule@mode<Y>[] generateRules(Site@mode<Y>) { ... }
12
13 Set @mode<?->X> saveImages(Site s)
14 attributor {
15 if (s.parsedimgs.length > 20) return full_throttle;
16 else if (s.parsedimgs.length > 10) return managed;
17 else return energy_saver;
18 }
19 {
20 JPEGWriter@mode<X> writer = new JPEGWriter@mode<X>();
21 foreach (Image i : s.parsedimgs) { writer.write(s); }
22 ...
23 }
24 }
25 class Site@mode<X> {
26 Resources[] resources;
27 Image[] parsedimgs;
28 Set crawl(Rule@mode<X>[] rules) { ... }
29 @mode<full_throttle> Set mediaCrawl() { ... }
30 }
31 class JPEGWriter {...} // jpeg image writer

Listing 3: jspider Method-Level Mode
Characterization.

P ::= D C program

D ::= m ≤ m mode declaration

C ::= class c∆ extends c{F M A } class
F ::= T fd = e field

M ::= T md(T x){e} method
A ::= e attributor
e ::= x | e.fd | new c⟨ι⟩ | e.md(e) | (T)e expression

| snapshot e [η, η] | mcase⟨T⟩{m : e} | e ◃ η

m ∈ MCONST mode name
c ∈ CN ∪ {Object, Main} class name
md ∈ MN ∪ {main} method name
x ∈ VAR variable name

T ::= c⟨ι⟩ | mcase⟨T⟩ programmer type
ι ::= η | ?, η object parameter list
η ::= m | mt | ⊤ | ⊥ static mode
mt mode type variable
? dynamic mode type
ω ::= η ≤ mt ≤ η′ constrained mode
∆ ::= ? → ω,Ω | Ω class parameter list
Ω ::= ω constrained mode list

Figure 2: Abstract Syntax: Terms and Types

µ ::= η | ? mode
τ ::= T | ∃ω.τ | modev type
Γ ::= x : τ typing environment

K ::= η ≤ η′ constraints

Figure 3: Type System Elements

load depends upon its internal state. We support this with a
method-level attributor on Line 14 - 18. In our case stud-
ies, we found that nearly all uses of method-level attributors
can be refactored away, either through the Strategy design
pattern [37] or though generic methods. Nonetheless, this
convenience feature may lead to more readable programs,
which is therefore supported in the current compiler.

4. A Formal Core for Ent

The abstract syntax of ENT is defined in Figure 2, on
top of Featherweight Java (FJ) [43]. We use FJ function
mtype(md,T) to compute the signature for method md of
object of type T , in the form of T → T , mbody(md,T)

to compute the body for method md of object of type T

in the form of x.e, and fields(T) to compute the field
signature for object of type T , in the form of T fd. The
root of inheritance hierarchy is a class named Object. The
bootstrapping expression is enclosed in class Main under
method main. We omit constructors. We use the standard
X ,Y notation to represent the concatenation of sequences X
and Y , and ϵ for the empty sequence.

ENT-specific terms include the modes declaration D , the
attributor with body A, the snapshot expression, the mode
case expression mcase⟨T ⟩{m : e}, and the mode case elim-
ination expression e ◃ η. In the concrete syntax, mode
case elimination for local field access is implicitly projected
based on the mode of the enclosing object. For example, in
Line 30 of Figure 1, the depth field access is represented as
depth ◃ X where X is declared in Line 17 of the same fig-
ure. In addition, we define abody(T) to compute the body
of the attributor for object of type T .

An ENT programmer type T can either be an object
type c⟨ι⟩ or a mode case type mcase⟨T ⟩. For example,
object type Agent@mode<managed> in the concrete
syntax is represented as Agent⟨managed⟩ in the formal
system, whereas Agent@mode<?> is represented as type
Agent⟨?⟩. Our system fully supports generic modes, with
expressive power on par with System F<: [28]. Additional
mode type parameter instantiations may appear in the rest
of the mode parameter list ι for c⟨ι⟩. Correspondingly, the
class-level mode parameter list is defined as ∆. For example,
the class parameter list for Agent of the running example
is represented as ? → ⊥ ≤ X ≤ ⊤.

4.1 The Type System

Type system elements are defined in Figure 3. In addition to
the programmer type, we use constrained existential types
∃ω.τ for typing the snapshot expression, and type modev

for typing the attributor. Details of these two types will be
explained shortly.

For an object of c⟨ι⟩, the mode of this object is the first el-

ement in ι. Formally, we define omode(c⟨ι⟩) ! µ if ι = µ, η.
On the class level we analogously define function cmode

over the class parameter list where cmode(? → ω,Ω) ! ?
and cmode(ω,Ω) ! ω. Finally, we define the param-

eter list of a class as param(η ≤ mt ≤ η′) ! mt and

param(? → ω,Ω) ! mt, param(Ω) if ω = η ≤ mt ≤ η′.
Notation ∆{ι/ι′} is standard point-wise type variable sub-
stitution.

Expression Typing Selected expression typing rules are
defined in Figure 4. Judgment Γ; K ⊢ e : τ says expression
e has type τ under typing environment Γ and constraint set
K. All rules are implicitly parameterized by the (immutable)
program P . We define Γ(x) as τi where i is the right most
position in Γ where xi : τi occurs. We define FV(e) as the set
of free variables in e. Each element η <: η′ in the constraint
set says mode η represents a lesser mode than the mode
of η′. Note that such mode may either be a mode constant
that appears in D or a mode type parameter. We define

222

(T-New)

ι = ?, ι′ iff class c∆ · · · ∈ P and cmode(∆) = ?
K ! cons(∆)

Γ; K ⊢ new c⟨ι⟩ : c⟨ι⟩

(T-Msg)

Γ; K ⊢ e : T0 mtype(md,T0) = T → T

Γ; K ⊢ e : T sfall(T0,Γ(this), K)

Γ; K ⊢ e.md(e) : T

(T-Snapshot)
Γ; K ⊢ e : c⟨?, ι⟩ ω = η1 ≤ mt ≤ η2

Γ; K ⊢ snapshot e [η1, η2] : ∃ω.c⟨mt, ι⟩

(T-MCase)
m = modes(P) Γ; K ⊢ ei : T for all i

Γ; K ⊢ mcase⟨T⟩{m : e} : mcase⟨T⟩

(T-ElimCase)
Γ; K ⊢ e : mcase⟨T⟩ η ∈ modes(P) or η appears in K

Γ; K ⊢ e ◃ η : T

Figure 4: Selected Expression Typing Rules

o.md(v ′)
m

=⇒ cl(µ, e{v ′/x}{o/this})
if dfall(o, m)

snapshot o [m1, m2]
m

=⇒ check(abody(c⟨?, ι⟩){o/this}, m1, m2, o)
if µ = ?

check(m′, m1, m2, o)
m

=⇒ obj(α′, c⟨m′, ι⟩, v)
if ∅ ! {m1 ≤ m′, m′ ≤ m2},α

′ fresh

For all rules: o = obj(α, c⟨µ, ι⟩, v), mbody(md, c⟨µ, ι⟩) = x.e.

Figure 5: Selected Reduction Rules

constraint entailment K " K′, which holds iff the reflexive
and transitive closure of K′ ∪ D is a subset of that of K ∪ D .
We define cons(η ≤ mt ≤ η′) !

⋃
{η ≤ mt, mt ≤ η′}

and cons(? → ω,Ω) ! {η ≤ mt, mt ≤ η′} ∪ cons(Ω)
if ω = η ≤ mt ≤ η′. Function modes(P) is defined as all
modes appearing in D , where P = D C .

In (T-Snapshot), the post-snapshot object is assigned with
some static mode type. This notion of “some but unspe-
cific” mode is well aligned with existential types. Since the
snapshot expression may check the lower bound and the up-
per bound of the mode, any successful snapshot will yield
an object whose mode is constrained. As a result, we use
bounded existential types. All existential types are alpha-
equivalent with respect to bounded variables.

In (T-Msg) the sfall predicate represents the waterfall
invariant, which we formally define:

Definition 1 (Static Waterfall Invariant). sfall(T ,T ′, K)
holds iff K " {omode(T) ≤ omode(T ′)}.

This definition says that the receiver’s mode must be
equal to or less than the sender’s mode. Observe that the
constraint form requires that no ? may appear on either end
of ≤; hence, the invariant here implicitly requires that ob-
jects with a dynamic type must not be sent messages di-
rectly. Sending a message to an object with unknown en-
ergy mode characterization is undesirable as it may vio-
late the intuition of mode-based energy management, i.e.,
the receiver happens to be in a state only suitable for a
full throttle execution whereas the message sender is
in mode energy saver.

Judgment K ⊢ τ <: τ ′ says τ is a subtype of τ ′ under
constraint set K. Subtyping rules are standard: we support
FJ nominal subtyping, existential introduction, existential

elimintion, subtyping reflexivity, and subtyping transitivity.
The only rule that is ENT specific is mode case subtyping; a
mode case type mcase⟨τ⟩ is a subtype of mcase⟨τ ′⟩ iff τ is
a subtype of τ ′.

Program Typing A program P = D C is well-typed iff
D forms a latice and each class in C is well-typed. Class
typing and method typing are largely FJ standard. The only
ENT-specific treatment is type distinction. For any class de-
fined as class c ∆ . . . , we allow mt to appear in the scope
of any method where param(∆) = mt, ι. Furthermore, ex-
pression this will be typed as c⟨mt, ι⟩. Observe that param
computes the parameter list whose first element is the inter-
nal type parameter in the presence of classes with dynamic
modes. In contrast, this is typed as c⟨?, ι⟩ in the attributor,
as attributors are invoked externally.

4.2 Operational Semantics

We define operational semantics through relation e
m

=⇒ e′

with selected reduction rules defined in Figure 5. Relation

e
m

=⇒ e′ denotes expression e is single-step reduced to e′

where m is the current mode. We further use
m

=⇒∗ to denote
the reflexive and transitive closure of

m
=⇒. Notation e ⇑

denotes that computation e diverges.
We supplement our language with additional runtime

expressions. cl(m, e) defines a closure, representing the
expression e defined in an object of mode m. Expression
obj(α,T , v) is an object value with the unique ID α, ob-
ject type T , and field values v . check(e, m′, m′′, o) performs
a run-time check to ensure the mode represented by e for
o is greater than m′ and less than m′′. A value v can be
an object value o, a mode name m, or a mode case value
of the form mcase⟨T ⟩{m : v}. The initial configuration of
reduction for P , denoted as boot(P) is cl(⊤, e), with
e = mbody(main,Main⟨⊤⟩).

Snapshoting leads to the evaluation of an object’s attrib-
utor, and if the resulting mode falls within the range de-
fined by the snapshot expression, it creates a shallow copy
of an object with a fixed mode type, illustrated in the reduc-
tion of a snapshot and check expression. Our copy seman-
tics addresses a key challenge of type soundness: if snap-
shotting were designed as merely a type cast it would be
possible to have two type casted aliases of the same object
hold different modes (types). That design would violate non-
equivocation in mode-based energy management and result
in type unsoundness. Foundationally speaking, copy seman-
tics enforces monotonic type change. We will revisit the per-
formance of copying in Section 5, and the programmabil-
ity impact of the shallow copy vs. deep copy design in Sec-
tion 6.3.

The runtime version of waterfall invariant is captured as:

Definition 2 (Dynamic Waterfall Invariant). dfall(o, m)
holds iff o = obj(α,T , v) and ∅ " {omode(T) ≤ m}.

223

This is a condition for the messaging expression to re-
duce. As we shall see in shortly, this condition always holds
for well-typed programs, and is hence redundant.

4.3 Properties

We define runtime error bad cast and bad check as the
following:

Definition 3 (Bad Cast). Expression (T ′)obj(α,T , v) is a
bad cast iff ∅ ⊢ T <: T ′ does not hold.

Definition 4 (Bad Check). Expression check(m, m′, m′′, o) is
a bad check iff ∅ " {m′ ≤ m, m ≤ m′′} does not hold.

We establish type soundness through type preservation
and progress lemmas:

Lemma 1 (Preservation). If Γ; K ⊢ e : τ , omode(Γ(this)) =
m, e

m
=⇒ e′, then Γ; K ⊢ e : τ .

Lemma 2 (Progress). Suppose Γ; ∅ ⊢ e : τ , FV(e) = ∅, and

omode(Γ(this)) = m then either e
m

=⇒ e′ for some e′, or e
is a value, or a bad cast or a bad check exists in the parsing
tree of e.

Now we can establish type soundness:

Theorem 1 (Type Soundness). If P is well-typed and

boot(P) = cl(⊤, e), then either e
⊤
=⇒∗ v , or e ⇑, or

e
⊤
=⇒∗ e′ and e′ has a bad cast or bad check in its parsing

tree.

In particular, a well-typed program cannot get stuck over
a messaging expression due to a violation of the dfall

invariant. We explicitly state this as a corollary. Let us say

cl(m0, e0) is a sub-redex of reduction e
m

=⇒ e′ iff e0
m0=⇒ e′0

is a sub-derivation of e
m

=⇒ e′. We next state an important
property of ENT.

Corollary 1 (Waterfall Invariant Preservation with Mixed

Typing). If P is well-typed, boot(P) = cl(⊤, e), e
⊤
=⇒

. . . e1
⊤
=⇒ e2, and cl(m, o.md(v ′)) is a sub-redex of e1

⊤
=⇒

e2, then dfall(o, m) holds.

Observe that run-time errors are never delayed to mes-
saging time. If any potential violation may happen due to
dynamic typing, a run-time error would result from a bad
check, i.e., at snapshotting time.

5. Implementation and Evaluation Settings

Compiler ENT was implemented as an extension of Java
7 using Polyglot [55]. It supports all syntactic and semantic
features presented in the paper.

Two of our features require additional information to be
tracked in our runtime. First, mixed typechecking requires
run-time tagging of objects with modes. In ENT, only dy-
namic objects (i.e., those instantiated from a class declared
with ?) need to be tagged, a small portion on the heap. Sec-
ond, we optimize our cloning by adopting a lazy copying
strategy for snapshotting. A physical object copy is only

name description System CLOC ENT Changes % Energy Overhead
crypto [60] RSA encryption A,B 381 46 0.40%

findbugs [18, 42] static analyzer A 147896 55 0.18%
jspider [4] web crawler A 9194 49 -0.56%
jython [20] compiler A 215749 33 1.17%

pagerank [21, 22] graph vertex ranking A 157 49 1.07%
sunflow [20] renderer A,B 21946 76 2.62%
xalan [20] transformer A 169927 33 3.41%

camera [12, 13] picture timelapse B 143 40 -6.54%
video [12, 13] video recording B 115 40 0.21%
javaboy [3] emulation B 6492 38 -0.70%
batik [20] rasterizer A 179284 225 -7.47%
newpipe [7] YouTube streaming C 8424 51 2.37%

duckduckgo [2] web browser C 13802 78 -2.39%
soundrecorder [15] sound encoding C 1090 118 -1.84%
materiallife [5] simulation rendering C 1705 63 0.44%

Figure 6: ENT benchmark descriptions and statistics.

needed if a dynamic object is copied more than once. This is
tracked in the metadata of the dynamic object.

In summary, each dynamic object contains two pieces
of additional metadata: its mode tag, and a boolean to in-
dicate whether it has been snapshotted before. Each post-
snapshotting dynamic object copy contains one piece of
metadata: its mode tag. Each generic object contains a map-
ping from type parameters to mode tags.

Target Platforms Our compiler has been successfully
ported to three mobile platforms:

• System A: Intel i5 CPU laptop with 4GB RAM, Ubuntu
14.04 LTS OS, and Java 1.8 JVM

• System B: Raspberry Pi 2 Model B with 1GB RAM,
Raspbian Jessie OS, and Java 1.8 JVM

• System C: Google Nexus 5X, Android 6.0 Marshmellow
OS, Android Runtime (ART) 2.1.0

Each platform represents a different, but energy critical,
environment for application development. System A and
System C are widely used for energy evaluation. System B,
the Raspberry Pi (Pi for short), is an emerging platform that
shares some traits of traditional embedded systems on one
hand, while on the other hand emerges as an “inexpensive
computer” for application-level software development [8,
9], with broader impact on, e.g., bringing technologies to
developing countries and assisting in education.

Benchmarks We have upgraded 15 Java applications into
ENT, detailed in Figure 6. For System A, our primary selec-
tion criterion is diversity in application characteristics where
energy consumption is known to be relevant. For example,
some are data-intensive (e.g., pagerank), while others are
computation-intensive (e.g., sunflow and crypto). We
also aimed at choosing applications using different system
resources, such as file I/O (e.g., batik) and network (e.g.,
jspider).

For System B, we have developed benchmarks in two cat-
egories. First, we developed 3 Pi-specific ENT benchmarks.
camera is repeatedly takes a picture for a given interval, de-
signed to model time-lapse monitoring using the Pi. video
takes a continuous stream of video. Both applications mon-
itor continuously, and represent typical real-world use cases
of the Pi [8, 9]. We also adapted javaboy, a small Game-
boy emulator, to the Pi, inspired by the Pi’s use in vari-
ous handheld entertainment projects [10]. Second, consid-
ering the trajectory of Pi development is to embrace general-

224

name workload attribution by energy saver managed full throttle QoS adjustment energy saver default (managed) full throttle
batik file size 16KB 261KB 2MB image resolution 512x512 1024x1024 2048x2048

findbugs code base (classes) drjava(5363) JavaRT(20136) jBoss(56704) analysis effort min default max
jspider site resources 89 1058 1967 spidering depth 3 4 5
pagerank graph (number nodes) cnr-2000(325557) eswiki-2013(972933) frwiki-2013(1352053) minimum change 0.01 0.001 0.0001
sunflow scene instances 3 6 8 anti-aliasing samples 1/4 1/4 - 4 1/4 - 16
crypto file size 1MB 2MB 4MB encryption key strength 768 1024 1280
camera picture resolution 720x480 1280x720 1920x1080 timelapse interval 500ms 1000ms 1500ms
video video resolution 480p 720p 1080p frames per second 10 20 30
javaboy ROM size 64KB 512KB 1MB screen magnification 2x 4x 6x
newpipe video length 2.5 min 6.5 min 16 min stream resolution 144p 240p 360p

duckduckgo search queries 8 16 24 search quality none javascript autosearch / javascript
soundrecorder recording length 3 min 4 min 5 min sample rate (kHz) 8 24 48
materiallife simulation population 1000 2000 5000 frame rate 5 10 15

Figure 7: ENT Benchmark Settings

purpose applications and project itself as “just an (inexpen-
sive) computer”, we also successfully ported crypto and
sunflow to the Pi, a stress test on the future adoptability of
Pi for security and graphics applications.

Lastly, we ported 4 real-world Android Apps for System
C into ENT applications. We selected Android Apps based
on the following criteria: (1) They must be open source. (2)
They must be real-world Apps that may be downloaded from
the original authors — either on the Google Play or F-Droid
store — and used on Android. newpipe is a light-weight
YouTube streaming App, duckduckgo is an anonymous
web browser, soundrecorder is a recording App for
small sound snippets, and materiallife is a animated
simulation of Conway’s game of life. As Android applica-
tions are typically driven by user interaction, we used the
RERAN [38] framework for recording and repeating exper-
iments.

Battery/Temperature Queries and Energy Measurements
We updated each System A benchmark to support battery-
aware programming and temperature-aware programming.
The benchmarks for System B and C are updated for battery-
aware programming only; the CPUs associated with System
B and System C are low-power in general, with no prior
report of thermal concerns that we know of.

ENT is shipped with a utility interface named Ext to
query the battery level and CPU temperature of the un-
derlying system. Our current implementation for System
A includes an ACPI [1] wrapper for battery and temper-
ature queries. The Pi as of now does not have a built-in
programming interface for querying battery levels, so for
System B, the battery level change is simulated. This is
a fast-developing landscape where API support may hap-
pen in the near future, as we are aware of some initial ef-
forts on battery monitoring through third-party boards [6,
14]. System C battery levels are queried through Android’s
BatteryManager.

For evaluation, energy consumption on System A was
measured using jRAPL [49], a Java library that supports pro-
filing programming using Intel’s Running Average Power
Limit (RAPL) support [33]. On System B and C, we mea-
sured energy consumption of devices using a Watts Up? Pro
power monitor [16]. System B experiments were run on a
Pi with a keyboard, mouse, HDMI monitor, and ethernet ca-
ble connected. All experiments were run using the respective
systems default power governors.

Data Collection We ran each experiment — as described
soon — 11 times for System’s A and B, discarding the first
run to account for JIT compilation and averaging the rest
of the results. We report the relative standard deviation for
our medium and large experiments. System A’s relative stan-
dard deviation is within 2% for 93% of our experiments
and within 3% for 99% of our experiments, with the ex-
ception of batik which exhibited high deviation due to its
relatively low energy consumption (< 10 J). System B’s is
within 2% for 100% of experiments and 3% for 100% of
experiments. We ran each experiment 10 times for System
C, rebooting the App each time. System C exhibited higher
relative standard deviation — within 2% for 84.3% of ex-
periments, 3% for 91.5% of experiments, and within 5% for
94.7% of experiments. We attribute the higher deviation of
System C to the reliance on external factors such as internet
response and touch interaction. While RERAN provides a
framework for repeating touch input, there is still a level of
non-determinism involved with running Apps. We report the
raw data of our experiments in the supplemental material.

6. Evaluation

6.1 Battery- and Temperature-Aware Benchmark

Design

We structured benchmarks in 2 different ways for battery-
aware programming, conducting 2 separate evaluations:

• (E1) A “battery-exception” program. We structure the
battery-aware application in a way to highlight the impor-
tance of ENT in throwing EnergyException’s in the
presence of insufficient battery. The EnergyExeption
is thrown when waterfall invariant is violated at run time.

• (E2) A “battery-casing” program. We design the battery-
aware application with mode cases, so that in the pres-
ence of different battery levels, the application may ex-
hibit adaptive behaviors by selecting different cases in
the mode cases.

For applications where temperature-aware programming
is relevant, we further restructure the benchmark in the fol-
lowing way:

• (E3) A “temperature-casing” program. We design the
temperature-aware application with mode cases to ex-
hibit alternative behaviors in the presence of CPU tem-
perature change.

225

We define 3 modes for (E1) and (E2) experiments:
energy saver, managed, and full throttle. For
(E3), we define safe, hot, and overheating as modes.

In ENT applications, there is often one “entry” object
(such as the Agent object in the running example) that
queries battery levels or temperatures through its attributor.
Recall in Section 2 we call the mode of this object the boot
mode, and the modes for the rest of the objects the workload
mode.

Attributor Definition In our experiments of (E1) and
(E2), the boot modes of energy saver, managed, and
full throttle are set at battery levels of 40%, 70%,
and 90%, respectively. For (E3) runs, the boot modes of
safe, hot, and overheating are set when the current
CPU temperature is below 60C, 60-65C, or above 65C,
respectively. We set the boot mode for each benchmark
using a battery-aware attributor for (E1) and (E2), and a
temperature-aware attributor for (E3).

For workload modes, the attributor definitions for each
benchmark can be found in Columns 2-5 of Figure 7. Gen-
erally for battery-aware programming, larger or more com-
plex objects are labeled with full throttle, reflecting
the fact that the programmer expects them to be in a mode
with the most available battery. For many benchmarks that
come from the DaCapo benchmark suites [20], the appli-
cation can often be configured into small/medium/large set-
tings, which is also used for defining the mode for our work-
load objects. In cases where the original benchmark only
comes with one default data size, our attributor defines the
managed mode — the middle mode of the 3 — for that
default workload size, and chose a reasonable step above or
below for energy saver and full throttle modes
respectively. Note that the decisions made for the attributor
definition does not impact Quality of Service (QoS). Instead,
they determine what type of workload may or may not be
processed by the application under a particular energy mode.

Mode Case Definitions For (E2) runs, mode cases are de-
fined to adapt to different energy modes. The mode case def-
initions for each benchmark are summarized in Columns 6-
9 of Figure 7. Defining mode-specific behaviors in ENT —
whether in response to a BatteryException in (E1), or
defined as in a mode case in (E2) — is known to have impact
on application quality of service (QoS) [26, 36, 40, 70].

In our experience, the development process of identifying
and defining mode cases is as follows. We first identify ap-
plication configuration parameters; modern applications are
often shipped either with a configuration file or a class defin-
ing global constants, which may serve as a starting point.
Second, we find the associated code for the parameters, espe-
cially the immediate class enclosing the parameter as a field.
This often lead us to other parameters that could be adjusted.
Third, we test run the program in its default configuration
parameter setting, and two additional settings within the ap-
plication specification requirement, but may potentially lead
to higher/lower QoS. We aimed at realistic QoS settings for
all our experiments. Last, the energy impact is measured, and

those sensitive to energy consumption are candidates mode
cases. In Section 6.3, we describe an analogous process in
the context of energy debugging with ENT.

6.2 Energy Behaviors of ENT Programs

In this section, we report the experimental results of (E1),
(E2), and (E3).

System A The results of (E1) are presented in Figure 8. We
enclose each snapshot expression with an exception handler
to catch the EnergyException that makes adjustment to
the aforementioned knobs in Figure 7. For each benchmark,
we report the application execution under all 9 combinations
of boot mode and workload mode.

As predicted, the mixed type system is able to find run-
time errors in the 3 scenarios of the 9 executions: managed
boot mode operating on full throttle workload mode,
energy saver on managed, and energy saver on
full throttle. We complement each case with a silent
version of ENT constructed by modifying the compiler so
that EnergyException is never thrown — even though
the runtime tagging remains in place. Intuitively, the silent
cases show “what could have been” if the runtime type
system was not in place. We highlight these runs in Figure 9
under System A for percent energy saved. Observe that in all
three cases where the exception is thrown, their counterparts
lead to a significant increase in energy consumption. This
shows in practice, respecting the waterfall invariant does
lead to energy savings.

For (E2), we have created mode cases for each bench-
mark’s boot mode that eliminate to the selected QoS val-
ues in Figure 7. The results of the battery-casing runs are
presented in Figure 10 under System A. Indeed, full
throttle boot mode consistently consumes more energy
than the energy saver boot mode, showing that com-
bining mode cases with a battery-aware attributor is an-
other effective way to create adaptive code. Notably, the en-
ergy consumption results in the figure are often proportional
to the amount of available energy, good news for energy-
proportional computing.

For temperature-aware runs, (E3), we used a mode case
for a Sleep object which regulates the sleep time needed to
cool the CPU at a given mode. We chose sleep intervals to
be 1000 ms, 250 ms, and 0 ms for modes overheating,
hot, and safe respectively. We selected five benchmarks
that have a distinct notion of “unit of work” — such as
each XML file transformed in xalan — where the appli-
cation can sleep in between. For all experiments, we chose
a large data set for benchmarks to stress the CPU. We ran
each benchmark twice, one with ENT implementation, and
the other with the original Java implementation. Figure 11
shows the results. Most ENT runs hover around the hot

threshold — sunflow being the exception that hovers near
the overheating threshold — while the Java runs often
lead the temperature to rise continuously throughout pro-
gram execution.

226

0
100
200
300
400

energy_saver managed full_throttle
Workload Mode

E
n

e
rg

y
(J

)

sunflow

0
200
400
600
800

energy_saver managed full_throttle
Workload Mode

E
n

e
rg

y
(J

)

jspider

0
1000
2000
3000

energy_saver managed full_throttle
Workload Mode

E
n

e
rg

y
(J

)

pagerank

0

5000

10000

energy_saver managed full_throttle
Workload Mode

E
n

e
rg

y
(J

)

findbugs

0
200
400
600
800

energy_saver managed full_throttle
Workload Mode

E
n

e
rg

y
(J

)

crypto

0.0
2.5
5.0
7.5

10.0

energy_saver managed full_throttle
Workload Mode

E
n

e
rg

y
(J

)

batik

Boot Mode
full_throttle

full_throttle silent

managed

managed silent

energy_saver

energy_saver silent

Figure 8: System A: Battery-Exception (E1) Runs: Each benchmark consists of three groups of results, each representing a
workload mode, i.e., energy saver, managed, and full throttle modes according to the descriptions in Figure 7.
When waterfall invariant is violated an EnergyException is thrown and the quality of service is scaled down from default
to energy saver as defined in Figure 7. Within each group, three of them represent each boot mode, whereas their three
counterparts represent the silent runs simulating the absence of Ent’s type system by ignoring the EnergyException.

43.34

58.05

49.22

24.95

16.75
22.36

47.1
53.11

7.33

−2.55
0.71

14.36
9.33

3.32

15.89

System A System B System C

0.00

0.25

0.50

0.75

1.00

su
nf

lo
w

js
pi

de
r

cr
yp

to

fin
db

ug
s

pa
ge

ra
nk

ba
tik

su
nf

lo
w

cr
yp

to

vi
de

o

ca
m

er
a

ja
va

bo
y

ne
w

pi
pe

du
ck

du
ck

go
so

un
dr

ec
or

de
r

m
at

er
ia

lli
fe

Benchmark

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Boot Mode ent silent

Figure 9: System A/B/C: Battery-Exception (E1) Runs (Normalized Energy Consumption over Boot-Workload
Mode Combinations where EnergyExceptions are thrown): The three bars for each benchmark represent the
managed/full throttle, energy saver/managed, and energy saver/full throttle boot mode/workload
mode combinations respectively. Each bar consists of two overlapping (sub)-bars, with the darker representing the energy
consumption incurred in ENT and the lighter representing the silent counterpart. Each (sub)-bar starts from the X-axis, i.e.,
the two overlap instead of being stacked. The number on selective bars represents the percentage ratio between the two. For
example, 43.34 in the first benchmark represents a 43.34% energy savings for the energy saver/full throttle run
against its silent counterpart. All data are normalized against the silent full throttle boot run.

System B We evaluated ENT on the Pi by conducting (E1)
and (E2) runs for 5 benchmarks. We adjust the input data
size proportionally for sunflow and crypto to account
for Pi’s slower processor. We run each instance of camera,
video and javaboy for 2 minutes; the minimum runtime
where we observed acceptable relative standard deviation
between the runs.

We highlight the runs where an EnergyException is
thrown (E1) in Figure 9 under System B. Results for (E2) are

presented in Figure 10 under System B. Overall, the results
in System B follow a similar trend as in System A, so most
earlier discussions apply here.

Compared with the Pi sunflow and crypto bench-
marks, the Pi-specific benchmarks generally yield less per-
centage energy savings. For example for (E2) runs, the per-
centage energy savings of the energy saver mode exe-
cution relative to the full throttle mode execution are
6.38%, 19.63%, 1.34%, respectively, for camera, video,

227

38.36

26.27

42.28

−0.2

15.63 17.83

42.24 44.97

3.03

9.4

0.62
4.17 2.17 2.59

6.8

65.24
71.61 70.51

24.73
30.47

20.49

69.49
74.41

6.39

19.63

1.34

17.8
21.82

8.65

23.65

System A System B System C

0.00

0.25

0.50

0.75

1.00
su

nf
lo

w

js
pi

de
r

cr
yp

to

fin
db

ug
s

pa
ge

ra
nk

ba
tik

su
nf

lo
w

cr
yp

to

ca
m

er
a

vi
de

o

ja
va

bo
y

ne
w

pi
pe

du
ck

du
ck

go

so
un

dr
ec

or
de

r

m
at

er
ia

lli
fe

Benchmark

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Boot Mode energy_saver managed

Figure 10: System A/B/C: Battery-Casing (E2) Runs (Normalized Energy Consumption): The two bars for each benchmark
represent the energy saver and managed boot mode normalized against the full throttle boot mode using the large
workload of each benchmark. The boot mode attributors are identical to those in Figure 8, and each boot mode selects the
level of quality of service listed in Figure 7 through a mode case. Numbers indicate percentage energy saved against the
full throttle boot mode. For example, the first bar represents a 65.24% energy savings for sunflow when running under
the energy saver mode as opposed to the full throttle mode.

50
55
60
65
70

0.00 0.25 0.50 0.75 1.00

time

Te
m

p
 (

C
)

sunflow

50
55
60
65

0.00 0.25 0.50 0.75 1.00

time

Te
m

p
 (

C
)

jython

45
50
55
60
65

0.00 0.25 0.50 0.75 1.00

time

Te
m

p
 (

C
)

xalan

55
60
65
70

0.00 0.25 0.50 0.75 1.00

time

Te
m

p
 (

C
)

findbugs

54

56

58

60

0.00 0.25 0.50 0.75 1.00

time

Te
m

p
 (

C
)

pagerank

Run ent java

Figure 11: System A: Temperature-Casing (E3) Runs: Ent runs sleep for a selected period of time at the end of each task by
snapshotting a dedicated Sleep object attributed to the current CPU temperature.

and javaboy. This may at first glance be disappointing.
Observe however, all these 3 benchmarks are “time-fixed”:
when we compare results from different combinations of
boot/workload mode, the execution time for all combinations
is fixed. This is natural for Pi applications, as one continu-
ously records video. Because of this, the difference of energy
consumption in different runs must come from power con-
sumption — the instant rate of energy consumption. In other
words, when we run video in the energy saver mode
as opposed to the full throttle mode, the Pi hardware
system is running under a lower-power mode. This intrigu-
ing result shows the subtle interaction between application-
level energy management and hardware-level energy man-
agement. It is intuitive: a lower video frame rate implies
the lower intensity of encoding, and the Pi hardware com-

ponents may have more opportunity to transition to a lower-
power mode under the default governor (ondemand) of OS-
level power management.

Finally, considering real-world use scenarios for Rasp-
berry Pi often involve long-running and continuous execu-
tions (such as in habitat monitoring), a relatively small per-
centage in energy savings may yield large savings over time.

In all Pi-specific benchmarks, we did not observe percep-
tible degradation in quality when the application is run un-
der the energy saver or managed mode. This assess-
ment may be subjective, but it may indicate the potential of
application-level energy optimization for the Pi platform.

System C We evaluated ENT on Android by conducting
(E1) and (E2) runs for 4 benchmarks.Results are presented
in Figure 9 and Figure 10. Like the Pi-specific benchmarks,

228

each Android benchmark runs for the same amount of time
for each input size. This is consistent with the view that
smartphone users rarely turn off their phone or exit Apps. In-
stead, most users treat their phone as a continuously running
device; thus, the energy savings shown in the Figures rep-
resent a reduction in the power consumed continuously by
the device, and show the potential savings ENT application
programmers can achieve in the smartphone environment.

Overhead Overhead introduced by our language design
comes from runtime object tagging, and object copying.
Note however, with the discussion in Section 5, both are con-
sidered in our compiler optimization. We measured overhead
introduced by our mixed type system by creating a baseline
as follows: it does not perform runtime tagging to objects,
and it treats snapshot as a no-op. Figure 6 shows the percent-
age overhead of ENT compared with the baseline runs. The
overhead is small. In several cases, the overhead is negative,
indicating the variance in other factors (system behaviors,
non-determinism in multi-threaded programs) often domi-
nates. The only exception is batik, which has a large vari-
ation due to its low energy consumption (< 10 J).

6.3 Qualitative Characteristics

Programmability In our case studies, we encountered a
number of energy-aware programming patterns we find ENT

is uniquely suited for, two of which we now summarize.
First, ENT allows programmers to express a number

of adaptive energy behaviors challenging for statically-
typed mode-based programming: (1) object modes are state-
dependent; see discussion in Section 2; (2) object modes
are configuration-dependent; see discussion in Section 2; (3)
modes based on factors external to the application, such as
lower-level system state (data rates in socket programming
for example), battery level, and CPU temperatures. Such
modes are particularly useful for defining boot modes; (4)
when an object serves as a mediator or facade [37] between
objects with different modes; (5) when an array may hold
objects with discriminate modes.

Second, ENT instills principled energy management into
mode-based programming. (1) all dynamic inspections on
the run-time — be it on the application heap state or the
underlying state — only happen in attributors. This in our
experience leads to cleaner programs easier to understand
and program. (2) generic modes can support expressive id-
ioms — such as mode co-adaptation in Section 2 — without
sacrificing correctness guarantees.

Our case studies also served as a reference for mak-
ing decisions on designing semantic features. Two cases in
point are whether changes between the snapshot and origi-
nal object should be synchronized at the language level, and
whether deep copy semantics should be used for snapshot-
ting. Our current design left out both features, and this min-
imalistic design is driven by case studies.

In our case studies we did not encounter use scenarios
where multiple snapshots are actively used and have over-
lapping lifetimes of mutating objects. Two common pro-

gramming patterns are: (1) snapshotted objects whose mode
changes due to system fluctuations such as battery, tempera-
ture, network states, buffer size, etc. For these objects, such
as the Agent object in Listing 1, only the latest snapshot
matters. (2) snapshotted objects whose mode is dependent
on runtime information no longer change after a few initial
steps of object construction. Examples are objects represent-
ing configuration settings, such as those passed in through
main argument. In both cases state synchronization is not
needed.

Our shallow copying design as opposed to deep copying
was motivated the observation that even though object ag-
gregates are common in our case studies, tightly coupled ob-
jects all with dynamic mode are uncommon. For example,
the mode of a container object, e.g., dependent on its size,
often has no correlation with the objects contained inside. In
such a scenario, deep copying at snapshotting time does not
reflect the intuition behind dynamic mode characterization.
An ENT programmer can mimic deep copying by following
the Composite design pattern [37] where the container object
and all its (potentially nested) components all implement a
method, say deep, specifying what/how component objects
need to be copied upon container object copying. This deep
method should be invoked on the post-snapshot object.

Debuggability ENT provides an “application-specific” view
of energy bugs [56, 57] in the context of energy-aware pro-
gramming: a violation of the principle of mode-based energy
management. In ENT, bugs may be detected in two forms:
(1) compile-time errors, when interactions between stati-
cally typed objects violate mode-based energy management;
(2) run-time errors related to dynamically typed objects.

Typecheckers are often viewed as the first line of defense
in debugging. Similarly, we believe the type system of ENT

is conducive in debugging mode-based energy-aware pro-
gramming. We return to Listing 1 to give an example. On
Line 29, a programmer may have forgotten to place [,

X] on the snapshot expression. If so, a compile-time error
will be thrown, indicating that the waterfall invariant needed
at s.crawl(depth) is not satisfied. By adding [, X],
the programmer acknowledges a Site could potentially be
an energy hotspot with varying energy consumptions impor-
tant for characterizing the energy behavior of Agent. Oth-
erwise, she could have simply labeled the Site object as
energy saver.

Now suppose the programmer does not add the exception
handler, and at runtime, an EnergyException is thrown.
The programmer can focus on the following questions: (1)
Why is a large Site crawled with low battery?, and (2) How
to handle this error? In the case of (2), the programmer may
catch the EnergyException, adjust the computation
to one likely consuming less energy, and continue program
execution. If the resulting program turns out not consuming
much less energy — this feedback can be received if the
programming environment is coupled with a jRAPL-like
tool — it would be an indication that the Site object is
not an energy hotspot after all.

229

In a nutshell, our type system aids the programmer in
iteratively debugging and identifying the energy hotspots
that lead to well-structured mode-based applications that
exhibit energy behaviors consistent with our intuition.

Ease of Use Because of the backward compatibility with
Java, ENT programming does not require significant effort.
Figure 6 shows the CLOC for each benchmark in Java, com-
pared with the required ENT changes. For each benchmark,
the CLOCs of ENT changes are negligible to the size of the
code bases. In practice, we find transforming a Java applica-
tion to a battery-aware or temperature-aware ENT program
usually takes 1-2 hours. More time is devoted to discover-
ing the energy hotspots following the debugging process de-
scribed above, a process aided by ENT’s mixed type system.

7. Related Work

A number of case studies [45, 58] have established the role
of application-level energy management in energy optimiza-
tion. Odyssey [54] is one of the earliest systems to high-
light the importance and feasibility of application-level en-
ergy management. Green [19] is a QoS calibration frame-
work with impact on energy consumption. PowerDial [40]
is a control-theoretic framework for dynamically calibrating
configuration parameters. PowerDial’s dynamic knobs con-
ceptionally represent potential quality of service hotspots
that can be encoded in our system using mode cases, or
adjusted when encountering EnergyExceptions. Joule-
Guard [39] is a cross-layer approach that provides energy
guarantees by coordinating system-level energy efficiency
and application-level accuracy. NRG-Loops [44] provides
application specific adaptations through for loop constructs
with respect to a RAPL monitored energy budget. These re-
search efforts in general are framework-based, not language-
based, but the overall goal of optimizing energy consump-
tion at the application-level is shared by our work.

The history of mode-based energy management is per-
haps as long as energy management itself, starting with CPU
modes [31, 47]. Several programming languages exist for
supporting mode-based energy management. In Eon [64],
modes are energy states to determine data flows in sensor
networks. LAB [46] allows programmers to prioritize among
latency, accuracy, and battery, through a discrete set of mo-
bile sensing algorithms. Eco [69] develops a supply/demand-
based model for supporting sustainability, where mode cases
were first used. While these frameworks provide mode-
based abstractions, none of these systems are type-based.
On the spectrum with proactiveness and adaptiveness on
both ends, these efforts focus on adaptiveness.

Designing type systems for energy-efficient computing
is an emerging direction. EnerJ [59] uses a type system
to separate data that can be approximated from those that
must be precise, with the goal of using approximation hard-
ware to save power. EnerJ’s approximate and precise anno-
tations can be viewed as two modes. Like EnerJ, we support
mode-based energy management at a finer-grained level.

Rely [27]’s type system reasons about reliability of com-
putations on unreliable but potentially more energy-efficient
hardware. Chisel [52] allows accuracy and reliability to be
specified as type signatures, where different signatures may
have different energy impact. Uncertain<T> [23] provides
a typed programming model for probabilistic reasoning un-
der approximate computations. DECAF [24] uses type in-
ference to manage the quality of overall program execu-
tion. There are type systems designed to reason about the
cost of resource use in computations, with recent examples
e.g., [30, 41]. When tailored to energy consumption, these
systems are complementary to our work. We regulate be-
havior in the presence of mode change; their systems can
verify that such mode changes lead to quantitative differ-
ence in resource consumption. Closer to our work is Energy
Types [32], where waterfall invariant first appeared. None
of these systems except DECAF support dynamic typing.
Together they highlight the importance of proactiveness in
energy management.

Mixing static typing and dynamic typing in type system
design is not new [17, 29, 34, 35, 50]. Gradual type sys-
tems [61–63, 65, 66] has recently been a particularly ac-
tive area of study. Another related area is to support mixed
type checking for dynamic languages, e.g., [48, 67]. The
type (i.e., mode) of a value in ENT is determined at runtime.
In contrast, the types of values in existing systems do not
change during the lifetime of the program execution; what
may change in their context is the concrete type of a pro-
gram point on the data flow path based on runtime values
flowing in. In that sense, there is a sink vs. source duality be-
tween existing work and our type system, leading to distinct
challenges for both. DECAF has an optional dynamic track-
ing system for supporting probability reasoning constructed
closer to the spirit of sink-oriented mixed type systems.

There is high-level analogy between our work and type-
based information flow systems [53, 68]. For example, a
recent effort HLIO [25] supports mixed type checking for
information flow control in Haskell. The invariant enforced
by these systems is non-interference. Our system on the
other hand enforces waterfall invariant.

8. Conclusion

ENT is an energy-aware programming language to support
proactive and adaptive mode-based energy management and
promote the interaction between the programmer and the
application runtime through mixed type checking. Our case
studies show ENT is easy to use, and may improve the
programmability, debuggability, and energy efficiency of
battery-aware and temperature-aware software.

Acknowledgments

We thank the anonymous reviewers for their useful sugges-
tions, and Sasa Misailovic for his feedback. This work is
supported by NSF CAREER Award CCF-1054515 and NSF
CCF-1526205.

230

References

[1] Advanced configuration and power interface, http://

www.acpi.info.

[2] Duckduckgo, https://github.com/duckduckgo/

android.

[3] Javaboy, http://www.millstone.demon.co.uk/

download/javaboy/.

[4] jspider, http://j- spider.sourceforge.net.

[5] Materiallife, https://github.com/

juankysoriano/MaterialLife.

[6] Mopi, https://pi.gate.ac.uk/pages/mopi.html.

[7] Newpipe, https://github.com/TeamNewPipe/

NewPipe.

[8] Turn your pi into a low-cost hd serveillance cam, https:
//www.raspberrypi.org/blog/turn-your-pi-

into-a-low-cost-hd-surveillance-cam/, .

[9] Satellite cameras saving endangered species, http:

//www.cambridgeconsultants.com/news/pr/

release/140/en, .

[10] Emulation on raspberry pi 2, https://

www.raspberrypi.org/blog/emulation-on-

raspberry-pi-2/, .

[11] Raspberry pi, https://www.raspberrypi.org/, .

[12] Raspberry pi camera, https://

www.raspberrypi.org/documentation/

raspbian/applications/camera.md, .

[13] Raspberry pi camera java, https://

blogs.msdn.microsoft.com/robert mcmurray/

2015/06/12/simple-java-wrapper-class-

for-raspistill-on-the-raspberry-pi-2/, .

[14] Simbamon, https://github.com/

hamishcunningham/pi-tronics/tree/master/

simbamon.

[15] Soundrecorder, https://github.com/dkim0419/

SoundRecorder.

[16] Watts up? power meters, https://

www.wattsupmeters.com/secure/index.php.

[17] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic
typing in a statically-typed language. In POPL ’89.

[18] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou. Evaluating static analysis defect warnings on pro-
duction software. PASTE ’07, pages 1–8.

[19] W. Baek and T. M. Chilimbi. Green: a framework for support-
ing energy-conscious programming using controlled approxi-
mation. In PLDI’10, pages 198–209.

[20] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA
’06, pages 169–190.

[21] P. Boldi and S. Vigna. The webgraph framework i: Compres-
sion techniques. In Proceedings of the 13th International Con-
ference on World Wide Web, WWW ’04, pages 595–602.

[22] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for
compressing social networks. In S. Srinivasan, K. Ramam-
ritham, A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar,
editors, Proceedings of the 20th international conference on
World Wide Web, pages 587–596. ACM Press, 2011.

[23] J. Bornholt, T. Mytkowicz, and M. Kathryn. Uncertain¡t¿: a
first-order type for uncertain data. In ASPLOS ’14, pages 51–
66.

[24] B. Boston, A. Sampson, D. Grossman, and L. Ceze. Probabil-
ity type inference for flexibile approximate programming. In
OOPSLA ’15.

[25] P. Buiras, D. Vytiniotis, and A. Russo. Hlio: Mixing static
and dynamic typing for information-flow control in haskell.
In ICFP 2015.

[26] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin
and yang of power and performance for asymmetric hardware
and managed software. In ICSA ’12.

[27] M. Carbin, S. Misailovic, and M. Rinard. Verifying quantita-
tive reliability for programs that execute on unreliable hard-
ware. In OOPSLA ’13, pages 33–52.

[28] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An
extension of system f with subtyping. In Information and
Computation, pages 750–770. Springer-Verlag, 1991.

[29] R. Cartwright and M. Fagan. Soft typing. In PLDI ’91.

[30] E. Çiçek, G. Barthe, M. Gaboardi, D. Garg, and J. Hoffmann.
Relational cost analysis. In POPL ’17, pages 316–329.

[31] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low
power cmos digital design. IEEE JOURNAL OF SOLID
STATE CIRCUITS, 27:473–484, 1995.

[32] M. Cohen, H. S. Zhu, S. E. Emgin, and Y. D. Liu. Energy
types. In OOPSLA ’12.

[33] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le. Rapl: Memory power estimation and capping. In
ISLPED ’10, pages 189–194.

[34] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In ICFP ’02, pages 48–59.

[35] C. Flanagan. Hybrid type checking. In POPL ’06.

[36] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for
mobile applications. In SOSP ’99.

[37] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995. ISBN 0-201-63361-2.

[38] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran:
Timing- and touch-sensitive record and replay for android. In
ICSE ’13.

[39] H. Hoffmann. Jouleguard: Energy guarantees for approximate
applications. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles, SOSP ’15, pages 198–214.

[40] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for responsive
power-aware computing. In ASPLOS ’11, .

[41] J. Hoffmann, A. Das, and S.-C. Weng. Towards automatic
resource bound analysis for ocaml. In POPL ’17, pages 359–
373, .

231

[42] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92–106, 2004.

[43] A. Igarashi, B. Pierce, and P. Wadler. Featherweight java - a
minimal core calculus for java and gj. In TOPLAS ’99, pages
132–146.

[44] M. Kambadur and M. Kim. Nrg-loops: Adjusting power from
within applications. In CGO ’16, .

[45] M. Kambadur and M. Kim. An experimental survey of energy
management across the stack. In OOPSLA ’14, pages 329–
344, .

[46] A. Kansal, S. Saponas, A. B. Brush, K. S. McKinley,
T. Mytkowicz, and R. Ziola. The latency, accuracy, and bat-
tery (lab) abstraction: Programmer productivity and energy ef-
ficiency for continuous mobile context sensing. In OOPSLA
’13, pages 661–676.

[47] S. Kaxiras and M. Martonosi. Computer Architecture Tech-
niques for Power-Efficiency. Morgan and Claypool Publish-
ers, 1st edition, 2008.

[48] B. S. Lerner, J. G. Politz, A. Guha, and S. Krishnamurthi.
TeJaS: Retrofitting type systems for JavaScript. In Dynamic
Languages Symposium (DLS) ’13.

[49] K. Liu, G. Pinto, and Y. D. Liu. Data-oriented characterization
of application-level energy optimization. In FASE ’15.

[50] Y. Long, Y. D. Liu, and H. Rajan. Intensional effect polymor-
phism. In ECOOP ’15, pages 346–370.

[51] G. Mainland, G. Morrisett, and M. Welsh. Flask: staged
functional programming for sensor networks. In ICFP ’08.

[52] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Ri-
nard. Chisel: Reliability- and accuracy-aware optimization of
approximate computational kernels. In OOPSLA ’14, pages
309–328.

[53] A. C. Myers. Jflow: practical mostly-static informa-
tion flow control. In 26th ACM Symp. on Principles of
Programming Languages (POPL), page 228241, January
1999. URL http://www.cs.cornell.edu/andru/

papers/popl99/popl99.pdf.

[54] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adaptation
for mobility. pages 276–287, 1997.

[55] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for java. In CC ’03, pages
138–152.

[56] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy
debugging on smartphones: A first look at energy bugs in

mobile devices. HotNets-X ’11, pages 5:1–5:6, .

[57] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is
keeping my phone awake?: Characterizing and detecting no-
sleep energy bugs in smartphone apps. In MobiSys ’12, pages
267–280, .

[58] G. Pinto, F. Castor, and Y. D. Liu. Understanding energy
behaviors of thread management constructs. In OOPSLA ’14.

[59] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. EnerJ: Approximate data types
for safe and general low-power computation. In PLDI’11.

[60] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko.
Specjvm2008 performance characterization. In Proceedings
of the 2009 SPEC Benchmark Workshop on Computer Perfor-
mance Evaluation and Benchmarking, 2009.

[61] J. Siek and W. Taha. Gradual typing for objects. In ECOOP
’07.

[62] J. G. Siek and W. Taha. Gradual typing for functional lan-
guages. Scheme and Functional Programming Workshop, 6:
81–92, 2006.

[63] J. G. Siek, M. Vitousek, M. Cimini, and B. John. Refined
criteria for gradual typing. In SNAPL ’15.

[64] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D.
Corner, and E. D. Berger. Eon: a language and runtime system
for perpetual systems. In SenSys ’07, pages 161–174.

[65] Takikawa, Feltey, Dean, Flatt, Findler, Tobin-Hochstadt, and
Felleisen. Toward practical gradual typing. In ECOOP ’15, .

[66] A. Takikawa, T. S. Strickland, C. Dimoulas, S. Tobin-
Hochstadt, and M. Felleisen. Gradual typing for first-class
classes. In OOPSLA ’12, pages 793–810, .

[67] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and
J. Vitek. Integrating typed and untyped code in a scripting
language. In POPL ’10, pages 377–388.

[68] S. Zdancewic and A. C. Myers. Secure information
flow and cps. In 10th European Symposium on Pro-
gramming, volume 2028, page 4661, 2001. URL
http://www.cs.cornell.edu/andru/papers/

lincont.pdf.

[69] H. S. Zhu, C. Lin, and Y. D. Liu. A programming model for
sustainable software. In ICSE’15, pages 767–777, 2015.

[70] Y. Zhu and V. Reddi. Greenweb: Language extensions for
qos-aware energy-efficient mobile web computing. In PLDI
’16.

232

